ENDOR spectroscopy reveals light induced movement of the H-bond from Ser-L223 upon forming the semiquinone (Q(B)(-)(*)) in reaction centers from Rhodobacter sphaeroides.

نویسندگان

  • M L Paddock
  • M Flores
  • R Isaacson
  • C Chang
  • E C Abresch
  • M Y Okamura
چکیده

Proton ENDOR spectroscopy was used to monitor local conformational changes in bacterial reaction centers (RC) associated with the electron-transfer reaction DQB --> D+*QB-* using mutant RCs capable of photoreducing QB at cryogenic temperatures. The charge separated state D+*QB-* was studied in mutant RCs formed by either (i) illuminating at low temperature (77 K) a sample frozen in the dark (ground state protein conformation) or (ii) illuminating at room temperature prior to and during freezing (charge separated state protein conformation). The charge recombination rates from the two states differed greatly (>10(6) fold) as shown previously, indicating a structural change (Paddock et al. (2006) Biochemistry 45, 14032-14042). ENDOR spectra of QB-* from both samples (35 GHz, 77 K) showed several H-bond hyperfine couplings that were similar to those for QB-* in native RCs indicating that in all RCs, QB-* was located at the proximal position near the metal site. In contrast, one set of hyperfine couplings were not observed in the dark frozen samples but were observed only in samples frozen under illumination in which the protein can relax prior to freezing. This flexible H-bond was assigned to an interaction between the Ser-L223 hydroxyl and QB-* on the basis of its absence in Ser L223 --> Ala mutant RCs. Thus, part of the protein relaxation, in response to light induced charge separation, involves the formation of an H-bond between the OH group of Ser-L223 and the anionic semiquinone QB-*. These results show the flexibility of the Ser-L223 H-bond, which is essential for its function in proton transfer to reduced QB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperfine and Nuclear Quadrupole Tensors of Nitrogen Donors in the QA Site of Bacterial Reaction Centers: Correlation of the Histidine Nδ Tensors with Hydrogen Bond Strength

X- and Q-band pulsed EPR spectroscopy was applied to study the interaction of the QA site semiquinone (SQA) with nitrogens from the local protein environment in natural abundance (14)N and in (15)N uniformly labeled photosynthetic reaction centers of Rhodobacter sphaeroides. The hyperfine and nuclear quadrupole tensors for His-M219 Nδ and Ala-M260 peptide nitrogen (Np) were estimated through si...

متن کامل

EPR and ENDOR Investigation of Rhodosemiquinone in Bacterial Reaction Centers Formed by B-Branch Electron Transfer.

In photosynthetic bacteria, light-induced electron transfer takes place in a protein called the reaction center (RC) leading to the reduction of a bound ubiquinone molecule, Q(B), coupled with proton binding from solution. We used electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) to study the magnetic properties of the protonated semiquinone, an intermediate pr...

متن کامل

Comparative study of reaction centers from photosynthetic purple bacteria: electron paramagnetic resonance and electron nuclear double resonance spectroscopy.

Reaction centers (RCs) from four species of purple bacteria, Rhodobacter sphaeroides, Rhodobacter capsulatus, Rhodospirillum rubrum, and the recently discovered bacterium Rhodospirillum centenum, have been characterized by optical spectroscopy [Wang, S., Lin, X., Woodbury, N. W., & Allen, J. P. (1994) Photosynth. Res. (submitted for publication)] and magnetic resonance spectroscopy. All RCs con...

متن کامل

Quinone (Q(B)) binding site and protein stuctural changes in photosynthetic reaction center mutants at Pro-L209 revealed by vibrational spectroscopy.

The effect of substituting Pro-L209 with Tyr, Phe, Glu, and Thr in photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides was investigated by monitoring the light-induced FTIR absorption changes associated with the photoreduction of the secondary quinone Q(B). Pro-L209 is close to a chain of ordered water molecules connecting Q(B) to the bulk phase. In wild-type RCs, two distinct ma...

متن کامل

Absence of a bicarbonate-depletion effect in electron transfer between quinones in chromatophores and reaction centers of Rhodobacter sphaeroides.

Higher plants, algae, and cyanobacteria are known to require bicarbonate ions for electron flow from the first stable electron acceptor quinone QA to the second electron acceptor quinone QB, and to the intersystem quinone pool. It has been suggested that in Photosystem II of oxygenic photosynthesis, bicarbonate ion functions to maintain the reaction center in a proper conformation and, perhaps,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 46 28  شماره 

صفحات  -

تاریخ انتشار 2007